Menu
  • branch
    • thinklab
    • insights
      • automating a lunar process plant
      • the future of process control
  • loops
    • Small Modular Reactor
    • Reduction Cell
    • Crude Oil Distillation Column
    • Adaptive Control of Ball Mill Grinding Circuits
    • Autoclave Control – a regulatory approach
    • Sliding Mode Control – a SAG Mill application
  • library
    • MODE
  • branch
    • thinklab
    • insights
      • automating a lunar process plant
      • the future of process control
  • loops
    • Small Modular Reactor
    • Reduction Cell
    • Crude Oil Distillation Column
    • Adaptive Control of Ball Mill Grinding Circuits
    • Autoclave Control – a regulatory approach
    • Sliding Mode Control – a SAG Mill application
  • library
    • MODE
home/Knowledge Base/State Space/SS.03 / The Matrix Transfer Function +

SS.03 / The Matrix Transfer Function +

45 views 0

A multiple-input multiple-output system is written in terms of the r component input vector \mathrm{U}(s)

(1)   \begin{equation*} \mathrm{X}(s) = [s \mathrm{I} - \mathrm{A}]^{-1} \mathrm{BU}(s) \end{equation*}

generating a set of n simultaneous linear equations, where the matrix \mathrm{B} is n \times r. The \mathrm{m} component system output vector \mathrm{Y}(s) may be found by substituting this solution for \mathrm{X}(s) into the output equation as in Eq. 2:

(2)   \begin{equation*} \begin{split} & \mathrm{Y}(s) = \mathrm{C}[s \mathrm{I} - \mathrm{A}]^{-1}\mathrm{B}\{\mathrm{U}(s)\} + \mathrm{D}\{\mathrm{U}(s)\} \\ & \mathrm{Y}(s) = [\mathrm{C}[s \mathrm{I} - \mathrm{A}]^{-1}\mathrm{B} + \mathrm{D}]\{\mathrm{U}(s)\} \end{split} \end{equation*}

and expanding the inverse in terms of the determinant and the adjoint matrix

(3)   \begin{equation*} \begin{split} & \mathrm{Y}(s) = \frac{\mathrm{C} \; \mathrm{adj}(s\mathrm{I} - \mathrm{A}) \mathrm{B} + \mathrm{det} [s \mathrm{I} - \mathrm{A}] \mathrm{D}}{\mathrm{det}[s \mathrm{I} - \mathrm{A}] \mathrm{D}} \mathrm{U}(s) \\ & \mathrm{Y}(s) = \mathrm{H}(s)\mathrm{U}(s) \end{split} \end{equation*}

where \mathrm{H}(s) is defined to be the matrix transfer function relating the output vector \mathrm{Y}(s) to the input vector \mathrm{U}(s):

(4)   \begin{equation*} \mathrm{H}(s) = \frac{(\mathrm{C} \; \mathrm{adj}(s \mathrm{I} - \mathrm{A})\mathrm{B} + \mathrm{det}[s \mathrm{I} - \mathrm{A}]\mathrm{D})}{\mathrm{det}[s \mathrm{I} - \mathrm{A}]} \end{equation*}

For a system with r inputs U_{1}(s), \dots ,U_{r}(s) and \mathrm{m} outputs Y_{1}(s), \dots, Y_{m}(s), \mathrm{H}(s) is a m \times r matrix whose elements are individual scalar transfer functions relating a given component of the output \mathrm{Y}(s) to a component of the input \mathrm{U}(s). Expansion of Eq. 3 generates a set of equations:

(5)   \begin{equation*} \begin{bmatrix} Y_{1}(s) \\ Y_{2}(s) \\ \vdots \\ Y_{m}(s) \end{bmatrix} = \begin{bmatrix} H_{11}(s) &  H_{12}(s) & \dots & H_{1r}(s) \\ H_{21}(s) &  H_{22}(s) & \dots & H_{2r}(s) \\ \vdots &  \vdots & \ddots & \vdots \\ H_{m1}(s) &  H_{m2}(s) & \dots & H_{mr}(s) \end{bmatrix} \begin{bmatrix} U_{1}(s) \\ U_{2}(s) \\ \vdots \\ U_{r}(s)\end{bmatrix} \end{equation*}

where the ith component of the output vector \mathrm{Y}(s) is:

(6)   \begin{equation*} Y_{i}(s) = H_{i1}(s)U_{1}(s) + H_{i2}(s)U_{2}(s) + \dots + H_{ir}(s)U_{s}(s). \end{equation*}

The elemental transfer function H_{ij}(s) is the scalar transfer function between the ithoutput component and the jth input component. Equation 5 shows that all of the H_{ij}(s) transfer functions in \mathrm{H}(s) have the same denominator factor \mathrm{det} [s \mathrm{I} - \mathrm{A}], giving the important result that all input-output differential equations for a system have the same characteristic polynomial, or alternatively have the same coefficients on the left-hand side.
If the system has a single-input and a single-output, \mathrm{H}(s) is a scalar, and the procedure generates the input/output transfer operator directly.

State Space
  • SS.03 / The Matrix Transfer Function +
  • SS.04 / Transformation from Classical Form to State-Space Representation +
  • SS.05 / Transformation From State-Space Equations to Classical Form +
View All 5  
KB Categories
  • PID
  • MPC
  • State Space
  • Optimisation
  • Feedback Control
  • Feedforward Control
  • Statistics
  • Control Theory
  • Genetic Algorithms
  • Control Performance
  • Models
State Space
  • SS.03 / The Matrix Transfer Function +
  • SS.04 / Transformation from Classical Form to State-Space Representation +
  • SS.05 / Transformation From State-Space Equations to Classical Form +
  • SS.01 / Linear Systems Described by State Equations +
  • SS.02 / State-Space Representation of Linear Time-Invariant Systems +